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E V O L U T I O N  O F  S I N G U L A R  P O I N T S  A N D  I N T E R F A C E S  

S E P A R A T I N G  T H E  D O M A I N  O F  R E S I D E N C E  

O F  T H E S E  P O I N T S  F R O M  T H E  F L U I D  

N.  A.  I n o g a m o v  x and A.  Yu.  D e m ' y a n o v  2 UDC 532.5 

Hydromechanical theories are by far based mainly on the concepts of vortices. Studying vortices assumes 
studying their generation and evolution. Since the circulation in a homogeneous fluid is preserved, vorticity 
generation in the absence of solid boundaries is possible only at density discontinuities. Therefore, an analysis 
of the dynamics of such discontinuities, which are also called contact surfaces or interfaces, is of fundamental 
importance. 

These problems are developed in the present paper. The development is based on the concepts of 
singularities of the velocity potential, which go back to S. A. Chaplygin. These singularities are in a sense 
virtual, because they are outside the region occupied by the fluid. In this case, stationary solutions and 
singularities in a steady state are usually dealt with. Here we consider the movements of singularities and the 
nonstationary effects. The hypothesis that  the singularity trajectory can meet a fluid boundary is discussed. 
At the moment of contact with the fluid, the singularity would be transformed from virtual into real. The 
results obtained are based on high-order expansions of the classical boundary conditions at the boundary 
surface and direct numerical modeling of fluid flow with density discontinuities. Analytical expansions are 
performed for # = 0 (# is the density ratio), when one fluid is contiguous with another fluid of infinitely 
small density (vacuum). They can be used until the appearance of a singularity. When the two conditions 
are satisfied, the function y = rl(x , t), which gives the boundary, remains a single-valued function of x. At 
the same time, numerical calculations were performed for # r 0, since, unfortunately, the numerical methods 
used cannot be applied for # = 0. In this case, a mushroom-shaped bluntness originates in the lower part of 
the jet and the Kelvin-Helmholtz instability can appear at the jet boundary. These effects are undesirable 
from the point of view of the aims of this paper. To weaken them, calculations were performed for # << 1. 

1. Bas ic  E q u a t i o n s .  The dynamics of a nonhomogeneous incompressible fluid in the nonstationary 
ease is described by the equations 

D , v + ( V p ) / p - g = O ,  ( V . v ) = 0 ,  Dip=O, D t = O , + ( v . V ) ,  (1.1) 

where v = {u,v}, p, p, and g are the velocity, density, pressure, and the acceleration of gravity, 
respectively. The last equation in this system describes the transfer of density inhomogeneities. The case 
of an incompressible fluid is studied below analytically and numerically. In addition, the compressibility effect 
of the fluid is analyzed numerically for small Mach numbers. The corresponding equations have the form 

D t v . . . ,  p t + ( V ' p v ) = O ,  D t ( e + v 2 / 2 ) + ( V . p v ) / p - ( g . v ) = 0 ,  p = ( 3 ' - l ) p e .  (1.2) 

Here the first equation D~v + . . . ,  which is related to the momentum,  coincides with the first equation of 
system (1.1); e is the internal energy per unit mass; and 3' is an adiabatic exponent. 
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The paper is concerned with the evolution of density discontinuities. The p distribution has a 
discontinuity at the boundary surface r/(x,*.). At the initial moment, p = pl for 9 > r/ and p = p2 for 
y < 77. We assume that p = p2/pl .  The p distribution at t = 0 is found from the equation of hydrostatics. In 
the regions of y > r /and y < r/, thc motion is vortex-free (rot v = 0). Systems (l.1) and (1.2) are integrated 
by direct numerical difference methods on a grid covering the rectangular computation domain. An analytic..: 
theory is constructed in terms of the scalar velocity potential ~ (v = V~).  In this case, as is known, system 
(1.1) reduces to the boundary-value problem. The potential obeys the equation A~ = 0 for y > 7/and y < 77. 
In addition, two boundary conditions are satisfied. We restrict ourselves to p2 = 0 and # = 0. The classical 
[1-4] kinematic and dynamic boundary conditions 

= 0 ,  = o  (1.3/ 

follow from the equation of surface advection and the Bernoulli equation, respectively. 
The problem of describing the behavior of density discontinuities arises in a wide spectrum of 

applications, for example, in connection with the Richtmyer-Meshkov [5-9] and Rayleigh-Taylor [9-16] 
instabilities. 

2. A n a l y t i c a l  Resu l t s .  Let the perturbations be periodic. We expand r /and ~p into harmonic series 

N + I  N 

,7(=,t) = a,,(tlcos(, xlexp(-,,yl/n, (2.1) 
n = l  n = l  

and r/into a power series 

N 
,7(x,t) = r/,,(t)= 2". (2.2) 

n=O 

The coefficients sn and r/n are related to each other by simple linear relationships. Let us move over to 
an accompanying system of coordinates related to the point (x = 0, y = r/0) at the boundary r/. The 
transformation x , y  ~ x, Y has the form Y = y - 77o. The series for qa (2.1) in this system takes the form 

N 
r  Y, t) = ~ ,  An( t )  cos (n z )  exp ( - n Y ) l n  - Do(t) I/", An = an exp (-nr/0). (2.3) 

We substitute series (2.2) and (2.3) into boundary conditions (1.3). After cumbersome calculations [17], which 
will not be shown here in detail, we obtain a system of ordinary differential equations- that determine the 
evolution of the unknown functions A , ( t )  and r/,,(t): 

-3 /x /2  + = -M /2 + (2.4) 
3/3/24 - 3/2rh/2 + 3/lr/2/2 + 3/0r/2 = - M ~ / 8  + M 1 M 3 / 6 -  M1M2r/z/2 - M~r/21/2 + gr/2; (2.5) 

-3 / s /720  + . . .  + A;/'lrhr/2 + 3/0r/3 = - M 2 / 7 2  + M2M4/48 - . . .  - M2r/lr/2 + gr/3; (2.6) 

3/7/40320 - . . .  + A;/lr/lr/3 +/~/0r/4 = -M42/1152 + M3Ms/720  - . . .  - M21r/lr13 + gr/4; (2.7) 

-3/9/3628800 + . . .  + 3/1r/lr/4 + 3/0rls = -M52/28800 + M4M6/17280 - . . . -  M2r/,~4 + gr/5; (2.8) 

3/11/479001600 - . . .  + 3/lrhr/5 + 3/0r/6 = -M62/1036800 + MsMT/604800 - . . .  + gr/6; (2.9) 

ill = - M 2 / 2  + 3Mzr/1; (2.10) 

r)2 = M4/24 + 5(-M3~?1/6 + M2rl~/2 + M,r/2); (2.11) 

r}3 = -M6/720  + 7(Msr/1/120 - .444772/12 + M3r/3/6 - M3q2/6 + M2r/lr/2 + Mlr/3); (2.12) 

~4 = +M8/40320 - M7r/1/560 + 3M6r/2/80 - Msr/3/4 - . . .  - 3M3r/3/2 + 9M2r/lr/3 + 9Mlr/4; (2.13) 
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r~s = -M10/3628800 + 1 l(Mgr/l/362880 - Msr/2/10080 + . . .  - MST/4/6 + M2r/lr/4 + Mitts); (2.14) 

i/6 = Mt2/479001600 - 13(Mllr/l/39916800 + . . .  + M2r/2r/4 - Msrls/6 + M2rllrl5 + Mlr/6). (2.15) 

In what follows, we use, for brevity, the linear combinations of amplitudes 

N 
Mj = ~ rn j Am 

m = l  

along with the amplitudes. System (2.4)-(2.15) relates to the case where the order of approximation N of 
boundary conditions (1.3) is equal to six. Lower-order systems follow from this system when the corresponding 
high-order equations and the number of unknown functions are reduced. 

System (2.4)-(2.15) consists of two subsystems of equations for the unknowns An and r/n, respectively. 
The second subsystem is solvable for the derivatives ~n, whereas the first subsystem (containing the derivatives 
A,~) includes the derivatives Jin in the form of some linear combinations. The left-hand sides of the equations 
from the first subsystem can be written in the form 

N 

j=l 

where the subscript i indicates the equation number, and the N x N matrix F O has matrix elements that 
depend only on r/n. 

N. A. Inogamov [17] have shown that for N > 1 solutions of system (2.4)-(2.15) that are of physical 
interest are attracted to the hypersurface D imbedded in the space An, ~n for which det Fij = O. From 
this follows the hypothesis that these solutions exist in a finite time interval 0 < t < to. An analysis of 
convergence, whose description is beyond the scope of this paper, has shown that the differences between 
successive approximations decrease rapidly (near-exponentially) with an increase in N. This indicates good 
convergence of the results. The moments tc at which the solution is attracted to D also turned out to be 
weakly dependent on N. 

Note that in the periodic case the perturbed boundary consists of alternating cavities (bubbles) and 
bulges (jets) of the fluid. Apparently, At t ~ to, series (2.3) diverges. This can indicate that the distance 
between the singularity that is the closest to the boundary r/and the top of the bubble x = 0, y = 77o becomes 
small (see [17]). Let us see how the approach of the singularity influences the results of calculations on a 
two-dimensional grid. 

3. O b s e r v a t i o n  of  t h e  Loss  of  S m o o t h n e s s .  Let us verify the above hypothesis that the smooth 
evolution of 77 ends at time tc because of the formation of a singularity at the top. We first dwell on the question 
of whether there is some evidence for a disruption in the smooth evolution. A typical numerical example is 
given in Fig. la. Here A0 = 0.1; r/0 = 0; # = 0.1; and the fluid over the boundary r/is dense. A cavity (bubble) 
in the dense fluid is located at the left boundary of the computation domain, and a bulge (jet) of this fluid 
is at the right boundary of the domain. This is the case of Rayleigh-Taylor instability: g = -1 ,  the y axis is 
directed upward.-The units are Igl = 1 and k = 1 (k is the wavenumber). Time is given in the units 1/v/-~. 
The perturbation with one harmonic is initial. Since the function r/(x,t) has even symmetry in x, half the 
period of )~ is shown. The rectangular images in the lower row cover the entire computation domain. The 
height-to-width ratio of this rectangle is 3 : 1 (in Fig. 1 this ratio is retained). To save space, the upper row 
shows only a part of the rectangle in the form of a band adjacent to the boundary 77. At the initial moment, 
the surface 77 divides the computation domain in two. For orientation, the corresponding straight line is shown 
in all images. 

The development in time is given in Fig. 1 from left to right and then from top to bottom. This is clearly 
seen from the perturbation growth. The successive images in Fig. 1 are given in the intervals tn+l - tn = 0.5 
from t = 0 to t = 5.5. The appearance of irregularities M and Q at t ,~ 1.5 approximately in the middle of 
the half-period in x is unrelated to the singularity at the top t3. This can be due to the fact that # # 0. 
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In any case, the irregularity M gradually becomes the jet M - M (see the last images in Fig. la), which 
forms a "cap" of the mushroom-shaped bluntness. As is known [18], such bluntnesses are associated with the 
nonzero density p2 of the lower fluid, because the hydrodynamical grid algorithms used do not work for # = 0. 
Therefore, to verify the theory, a sufficiently small value of # was used. 

Obviously, the analysis of Fig. la provides a positive answer to the question of the loss of smoothness: 
a singularity approaches the top point of the bubble B at tr = 2.5-3. This can be responsible for the observed 
appearance of a new, initially small bubble in the vicinity of the top of the old large bubble. The symmetric 
half of the boundary of the new bubble is given by the arc B1C. This arc is bounded by the cusp (point) C. 
The arc B1C "distends" (inflates) with time. The tops of the bubble at t < tr and t > tc are denoted by B 
and Bl, respectively. 

Let us consider the influence of the grid resolution. The dependences on the time At and space steps 
were investigated using grids with both rectangular cells with steps Ax and Ay and square cells with Ax = 
Ay = A. Accurate calculations with small values of both At and A turned out to be necessary to obtain 
satisfactory data. Accordingly, the values of Net and Ng, must be large. Here Ns, = T/At  is the number of 
time steps, T is the integration time, and Ng, = A/Ax. In particular, the development of the perturbation 
amplitudes to ,-~A requires 10s-106 time steps. The resolution of coarse grids with A > A/(40-50) is not enough 
to reveal singularities - -  compare the calculations on a coarse grid (Fig. lb with A/A = 30) and on a fine grid 
(Fig. la  with A/A = 110). This is caused by the decrease in resolution due to the smoothing effect of the grids, 
which results in smearing the fine details of the picture, and also by an increase in the effective approximation 
viscosity and the at tendant  increase in artificial dissipation. As a result, the propagation perturbations is 
somewhat slowed down (compare the jet locations in the last images of Figs. la  and lb). With an increase 
in A, the cusp C, which is formed after moment to, is gradually smeared, so that the evolution of 77 seems to 
be smooth and without singularities behind some threshold in A. 

The calculations presented in Fig. 1 were performed by A. V. Chekhlov for/~ = 0.1, Ax(0) = 0.1, and 
An(0) = sn(0) = 0 by the artificial compressibility method [19]. System (1.1) was integrated. Note that a great 
number of grid calculations were performed to estimate the degree of reliability of the results. In addition, 
A. V. Chekhlov used various velocities [AI(0) = 0.01, 0.025, 0.05, 0.1, 0.2, and 0.5], densities (1/# = 2, 10, 20, 
and 40), time steps, and Ngr = A/Ax (20, 40, 60. . .  200, and 220). Moreover, he calculated several variants, 
in which the perturbation at the initial moment was given by two harmonics A1 and A2. The time required 
to calculate one time step using the method of [20] and a 100 • 200 grid on a Pentium PC AT-586 processor 
is --~ 1 sec. The computer time for one variant was ~ 50-100 h. 

4. Ver i f ica t ion  of  t h e  T h e o r y  by Calcu la t ions .  Let us study the effect of variation of initial data 
on the results. We consider variation of the initial amplitude AI(0). The corresponding variants are presented 
in Figs. 2 and 3. Figure 2 shows the formation of a singularity at the top of a bubble at small initial amplitudes 
of perturbation, and Fig. 3 the formation of a singularity at the top at relatively large initial amplitudes. The 
first two images in the lower row show the early stages of development of the arc B~C. In these stages, its 
formation is not yet pronounced. This explains the error in determinating the quantity tr Calculations were 
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performed by the method of coarse particles [20] on a grid with A = A/140 for/~ = 0.1. In this case, the system 
of gas-dynamic equations (1.2) is integrated. The boundary conditions at the upper and lower boundaries of 
the computation domain were varied in the calculations. Various rigorous and free boundary conditions were 
used. Variation of these conditions has shown that they do not influence the observed loss of smoothness. 
For example, Figs. la  and lb refer to the case where free-boundary conditions are specified from above and 
below, and Figs. 2 and 3 to the case where a free-boundary condition is specified from above and the mass 
flow vanishes from below. The symmetry conditions were specified at the left and right boundaries. 

On the one hand, to obtain high resolution, it is necessary that the parameter A/A be as large as 
possible. On the other hand, the main-memory size of the computers used limits the maximum grid dimension 
to ~5000 cells in the method of [19] and -,,20,000 cells in the method of [20]. Moreover, the time the processor 
spent to perform one step in t increases rather quickly with the number of cells (somewhat quicker than in 
direct proportion to the number of cells), and the step At itself decreases proportionally with l/Ngr due to 
the Courant criterion. This leads to the fact that calculations on fine grids are time-consuming because of the 
limited resources of the processor. Under these conditions, the vertical dimension of the calculation domain 
should be chosen with caution. Emphasis was given to bubble dynamics. Numerous tests in which the initial 
depth of the lower low-density fluid was varied have shown that the bubble behavior is strongly independent 
of the jet behavior. For example, the jet can go through the lower free boundary or collide with it if this is 
a rigid boundary, turn along it, and then, after colliding with counter jets, rise up inside the bubble (see, 
for example, Figs. la  and 2); and this does not have a substantial influence on the fate of the bubble. This 
independence makes it possible to decrease the vertical dimension of the computation domain at the cost of 
the lower-fluid depth. In the calculations, whose results are presented in Figs. 2 and 3, the depths of the high- 
and low-density fluids are in the 7 : 5 ratio at the initial moment (the first image in the upper sequence of 
Fig. 2). 

The cMculations shown in Figs. 2 and 3 refer to small and relatively large amplitudes of perturbations, 
respectively. A singularity at the bubble top forms over the entire range of amplitudes. At t < to, the shape 
of the boundary is in satisfactory agreement with that found theoretically. The dependence of the quantity tc 
on initial data and its value are also in good agreement with the theoretical data. The shapes of 77 at t < tc 
and the moments tc calculated by two absolutely different methods [19 and 20] are in satisfactory agreement. 
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In Figs. 2 and 3, A](0) = 0.025 and 0.22, respectively, and the initial velocities differ by an order of 
magnitude. Therefore, the amplitudes of 7/perturbations differ markedly at the same moments. In particular, in 
Fig. 3, the jet reaches the lower boundary earlier, and the top of the bubble reaches the upper boundary earlier 
than in Fig. 2. This difference is especially noticeable in the early stages (cf. with the images for t = 2.24). 
With an increase in AI(0), the size of the irregularities M and Q gradually decreases. In Fig. 3, they become 
unnoticeable. It is possible that, as was proposed in Section 3, they might be related to a mushroom-shaped 
formation which forms with time at the ends of the jets. Since we were interested in phenomena occurring in 
the vicinity of the bubble top, the thickness of the low-density fluid layer and, hence, the jet path were reduced 
and turned out to be small. This does not make it possible to investigate adequately the generation of the 
mushroom-shaped bluntness. In connection with the question on the dynamics of the boundary area of jets, 
note that the appearance of a nonanalytical point in this area was predicted for the case where/~ = 0 [21, 22]. 
Whether the corresponding numerical calculations will confirm this prediction based on a weakly nonlinear 
approximation is still not clear. In addition, it remains unclear whether the condition/~ = 0 is important for 
this problem. 

The evolution of the middle isochore p = (pl + p2)/2 is shown in Figs. 2 and 3, as in Fig. 1, in the 
upper sequence of images. The lower row shows the evolution of six neighboring isochores, which divide the 
density interval between p2 and pl into six equal sections. These images characterize the degree of smearing 
of the density profile caused by numerical diffusion when the Euler method is used. The current time is given 
in the upper right corner. Note that the output data are nonuniform in time. This nonuniformity is caused 
by the necessity of examining more thoroughly the most important stages of the evolution. In Fig. 3, the 
output data are most numerous near the moment to. The rectangles denote the calculation domain. In Figs. 2 
and 3, the upper rectangles are extended in the vertical direction by a factor of 1.68, and the lower rectangles 
are extended in the horizontal direction by a factor of 1.19. In the lower row of Fig. 2, 20% of the vertical 
dimension of the domain in the upper part of the rectangle was omitted to reduce the area. The most essential 
part of the calculation domain is shown at the bottom of Fig. 3. 

The calculations are performed over a wide range of initial amplitudes AI(0), which covers about two 
orders of magnitude. The theoretical and numerical functions tc(A](O)) are presented in Table 1. Evidently, if 
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TABLE 1 

At(0) 

0.01 
0.025 
0.05 
0.1 
0.22 
0.34 
0.70 

Theory 

54-0.5 
4.3 + 0.5 
3.6 + 0.5 
2.9+0.5 
2.3 + 0.5 
1.7 + 0.5 
1.4 + 0.5 

te 
Calculation 

4.5 =t= 0.5 
4.3 + 0.5 
3.2 + 0.5 
2.7 + 0.5 
3.0 + 0.2 
2.9 + 0.5 
2.7 4- 0.5 

the discrepancy for relatively high amplitudes, which somewhat exceeds the error, is ignored, one can conclude 
that these functions are in satisfactory agreement. The theoretical value of tc was determined by two methods. 
According to the first method, the time at which det tc decreases by a factor of 1000 compared with the initial 
value was taken as det F. The error in this case is determined by the spread in the values of te with variation 
of N. In the second method, a norm that determines the distance between trajectories was introduced. The 
moment at which this norm exceeds some given number was taken as t~. The error was determined by a 
reasonable variation of this number and N. Table 1 gives the total error of these methods. This numerical 
error is due to the difficulty in determining to. The fact is that the bubble B1C is not pronounced in the 
vicinity of re. This is evident in the upper sequence of images in Fig. 3 in the time range of 3.02 < t < 3.7 
(see also the enlarged images in the lower sequence at t = 3.02 and 3.25). 

Mention should be made of some difficulties arising in the calculation of extreme variants with low or 
high initial velocities. The number of integration steps Nst increases at the boundaries of the velocity range 
given in Table 1. This complicates calculations outside this velocity range. We shall explain the causes of the 
growth of Nst. The small values of AI(0) were calculated for g = 1. The step At that is chosen as some fraction 
of the inverse increment 1/7 (7 = ~ or by the Courant criterion is fixed. Its determination in accordance 
with the Courant criterion is due to the fact that the sound velocity is higher than the hydrodynamic velocity 
and does not vary, whereas the integration time T increases with a decrease in A1 (0). This explains why Nst 
grows at low velocities. At high velocities, Nst increases, because AI(0) was fixed, and g was decreased in 
the numerical calculations. The final data in all the figures and Table 1 are presented in units g = k = 1. 
If At and AI(0) are fixed, and g decreases, then N3t increases, because a decrease in g leads to slowing 
down the development process. Note also that for very small AI (0) (< 0.01) small-scale perturbations appear 
throughout the boundary 7/at time t < t~. Their appearance is probably due to grid-generated perturbations. 
As a result, it is impossible to determine te numerically. 

5. E v o l u t i o n  of  t h e  S o l u t i o n  A f t e r  C o n t a c t  w i t h  a S ingular i ty .  The situation at 0 < t < tc and 
t ~ tc was analyzed above. Grids with maximum possible values of Ngr were used to investigate this situation 
in detail. Due to the limited memory, this led to a small height of the calculation domain. For example, in 
the calculations presented in Figs. 2 and 3, the ratio of the path D b the bubble top could travel to the period 
A was 0.5. The quantity Db is equal to the thickness of the dense-fluid layer. To minimize the boundary 
effect, free boundary conditions were usually specified from above. Due to the relatively small ratio Db/A, the 
bubble B1C approaches the upper boundary soon after time re. In so doing, the bubble still remains small. 
This means that not much time has passed after the contact with the singularity. 

Let us consider the solution of the problem for moments when the cusp C moves to great distances 
(,,~ A/2 and more) from the top B1. For this, the ratio Db/A must be increased. Since the total number of cells 
is limited by the memory, Ngr must be decreased. Fortunately, this turned out to be possible. The wavelength 
can be halved relative to the horizontal grid size and, correspondingly, the path of the bubble top can be 
doubled. The parameter A/A still remains small enough to resolve the appearance of a singularity. 
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Examples of such calculations are shown in Figs. 4 and 5, where the grid is 70 x 120, A = A/70 
(this step is sufficient to reveal the contact with the singularity), and Db/A -- 1. The time step in the units 
g = k = 1 was ~ 7.  I0 -5. Figures 4 and 5 give the rapid and slow variants of perturbation development. 
Here the initial amplitude equals AI(0) = 0.079 and 0.023, respectively. In Fig. 4, the contact with the 
singularity takes place at tc = 4.1 4-0.3. This value is somewhat larger than that obtained in integration 
with the doubled quantity Ngr. A small subharmonic perturbation with doubled wavelength and with initial 
velocity amplitude A0.5 = 0.0039 and Ao.5/A1 = 1/6 was superimposed on the basic velocity perturbation to 
see how the symmetry breakdown influences the formation of a singularity. As is seen, if the amplitude A1 (0) 
is smaller, the contact occurs later at tc = 4.6 4- 0.3, as it must be. Because of the initial asymmetry, the 
entire solution is asymmetric. 

Let us examine the structure of the solution when the arc length is B1C ~ A/2. This condition is 
satisfied in the final images of the sequence presented in Figs. 4 and 5. The formation of wedge-shaped tops 
on the surface 7/is the most striking feature. Measurements of the wedge angle give values close to 120 ~ In 
checking these measurements, the reader should take into account the distortion coefficient of the ratio of 
vertical to horizontal dimensions (see Section 4). 

The formation of a wedge-shaped top in the asymmetric case in which the basic solution is perturbed 
by a small subharmonic is shown in Fig. 5. Again, as in the symmetric case, the angular measurements give 
values close to 120 ~ The full calculation domain is shown in the upper and lower rows in Figs. 4 and 5. 
The top must form immediately after moment to. Some evidence for such tops is also given in Figs. 2 and 3. 
The wedge angle a changes with time (somewhat increases) in the early stages at to. After a great period of 
time from the moment to, the quantity a presumably reaches an asymptotic value. Measurements in the early 
stages are difficult, because the arc B1C is small. Measurements of the angle c~ as a function of (t - to) for 
(t - G) << tc require accurate calculations on fine grids. Measurements in the later stages give a = 115 ~ + 10 ~ 
i.e., the angle is approximately equal to 120 ~ . 

In the later stages, i.e., at t >> re, a steady-state solution must be gradually reached. This solution is 
stationary in a moving coordinate system related to the boundary q. An exact steady-state solution exists 
in the incompressible case, when the Mach number is M = 0, and under the conditions # = 0 and g = 1. 
For M << 1 and # << 1, a quasi-steady-state stage appears instead of an exact steady state. This stage exists 
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for a long time owing to the smallness of M and/~. The asymptotic solutions for g = 0 requires a separate 
consideration. Note that there are no repeat contacts with singularities in the vicinity of the bubble top. 

We give two types of a simple steady-state solution that satisfies boundary conditions (1.3): 

fl  = 2~(1 -- I~)gexp( i~r /4)z3]2/3 ,  f2 = 2 ~ 1  - # ) g e x p ( - i 3 r / 4 ) z 3 / 2 / 3 .  (5.1) 

Here f = ~o + ir  is the complex potential, and z = x + iy.  The solution fl  can be shown to correspond to 
a solitary bubble filled with a fluid at rest with density ratio /~. The free surface r I of the bubble forms a 
wedge for ~ = 120 ~ The solution f2 corresponds to a solitary wave with an infinite amplitude at the interface 
between the moving fluid and the fluid at rest with density ratio t~. As is known, the solution f2 describes 
the asymptotic flow behavior in the vicinity of the wedge-shaped top of a crest with an angle of 120 ~ of the 
limiting Stokes wave. Obviously, the solution fl  relates to the asymptotic flow behavior in the vicinity of the 
bubble top, which gradually reaches a steady-state value at t > re. It seems likely that precisely this solution 
behavior is observed in Figs. 2-5. A detailed investigation of the steady-state solution requires large values of 
the parameter Db/~  and, hence, large grids and long calculations. 

Note that in the calculations by the method of [19], at t > tc bubbles with rounded-off tops are obtained 
(Fig. la). Nevertheless, the solutions with wedge-shaped tops calculated by the well-known method of coarse 
particles [20] should be viewed seriously. The fact is that it is easy to imagine how a numerical algorithm could 
"gloss over" smooth a wedge-shaped top due to the influence of artificial viscosity or insufficient resolution. 
But it is difficult to imagine how a numerical method could "artificially" cause first the formation and then 
the steady existence of such a top. 

6. Conclus ions .  Analysis was made of the solutions of the equations of continuum mechanics, which 
describes the motion of an incompressible fluid or a weakly compressible gas separated by a contact boundary 
into regions with different densities. We put forward the hypothesis that a singularity approaches this boundary 
and attaches to it. The contact with the singularity divides the evolution into two stages. The approach and 
the contact with this singularity takes place in the first stage. The system with the attached singularity 
further evolves and the second stage starts. The solution in the second stage was investigated in detail. No 
repeat contacts with singularities occur under the periodic boundary conditions. Moreover, we proposed the 
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hypothesis that after moment tc the solution has a wedge-shaped top at the contact boundary. This hypothesis 
is based on numerical results and on the fact that an exact solution that corresponds to a solitary ~vedge- 
shaped bubble with an apex angle of 120 ~ exists in the hydrodynamics of heavy fluids. Some time after 
moment tr. the apex angle at this top is approximately equal to 120 ~ 
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